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Intermediate structure in nucleonaucleus scattering? 
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Received 2 January 1974 

Abstract. The problem of inelastic nucleon-nucleus scattering is formulated in the frame- 
work of Green functions. In this microscopic description, the non-instantaneous (energy- 
dependent) part of the effective particle-hole force (irreducible vertex) determines the non- 
direct contributions to the scattering matrix. In order to obtain the intermediate structure 
this vertex is studied in more detail and several approximations are given. Couplings of 
virtual phonons of different kinds play an important role in this procedure. If one goes 
beyond perturbation theory three different effective forces occur in the coupling process. 
The connection to microscopic nuclear structure calculations is discussed. The general 
form of the Tmatrix emerging from the structure of the effective particle-hole force is given. 
Additionally more explicit expressions are derived by assuming certain structures of the 
final nucleus state. 

1. Introduction 

The aim of this paper is to describe inelastic nucleon-nucleus scattering within the 
framework of Green functions. This seems to be a useful tool to investigate scattering 
processes, since one can easily link the S matrix for general scattering processes with 
boundary values of Green functions (Naminiki 1960, Zhivopistsev 1965, Villars 1967). 
The theory of Green functions (Abrikosov et a1 1965, Schultz 1964, Migdal 1965, Brown 
1972, Fetter and Walecka 1971, Mattuck 1967) on the other hand is an established 
microscopic many-body theory, which can deal in a transparent manner with effective 
quantities (Migdal 1965, Brown 1972, Fetter and Walecka 1971, Mattuck 1967)- 
nowadays essential in the description of nuclear phenomena. The scattering process, 
which has in a certain sense the simplest structure, is the nucleon scattering on one-hole 
nuclei, since in this case one has to treat essentially an extension of the (renormalized) 
RPA approach (or TD approach) to scattering processes. This problem has been studied 
in several publications (Mahaux and Weidenmuller 1969, Dietrich and Hara 1968, 
Dietrich and Dover 1969, Ginnocchio et a1 1970, Weigel 1969, Wegmann 1969, Vogeler 
and Weigel 1973). The next step seems to be the investigation of nucleon scattering on 
even-even nuclei, for which we expect the intermediate coupling of phonons to the one- 
particle propagation to play (besides direct scattering) a role in the interpretation of cross 
sections (Love and Satchler 1967, Love 1969). Scattering processes of this type have been 
mostly investigated in the ‘standard’ DWBA approximation and the antisymmetrized 
DWBA approach (Hodgson 1971, Austern 1970, Young 1968, Jackson 1970). It is well 

t A summary of this paper has been published in the Proceedings of the International Conference on Nuclear 
Physics, Munich 1973. 
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known that the validity of the standard DWBA is limited and we shall not repeat all the 
arguments in this paper (Emrich 1971). We will return to this question later after having 
formulated the problem. Therefore higher-order processes have been taken into account? 
in a more or less phenomenological manner (Hodgson 1971, Austern 1970, Young 1968, 
Jackson 1970, Emrich 1971, Geramb 1972, Geramb et a1 1972, Geramb 1973). A recent 
semi-phenomenological analysis has been quite successful in explaining the data 
(Geramb 1972, Geramb et a1 1972, Geramb 1973). The investigation was based on the 
theory of Love and Satchler (1967) (see also Love 1969), which amounts to an extension 
of the treatment of Villars (1967) taking first order (to the Hartree-Fock structure) 
correlations in the initial and final target state into account. The treatment is done in the 
standard antisymmetrized hamiltonian approach to the scattering process, replacing the 
potential by the commutator [U, a,,] -. In our method the formulation via the effective 
particle-hole force (irreducible vertex) (Abrikosov et a1 1965, Migdal 1965, Baym and 
Kadanoff 1961, Brenig and Wagner 1963) is used, which contains the essential inter- 
mediate stages of the process. It turns out that this quantity determines the features of 
the scattering (Emrich 1971) and suitable approximations are needed. The advantage of 
this formulation is that one can use methods and results already known from the nuclear 
structure problem The role played by effective quantities of several types can be re- 
cognized and one has additionally a theory available to determine these quantities either 
from first principles or by linking them to known problems. 

In $ 2  we shall give necessary definitions and the general formulation of the 
problem in the Green function scheme. In $ 3 we deal with approximations for the effec- 
tive particle-hole force needed for the solution of the relevant equations. Section 4 is 
devoted to the structure of the scattering process emerging from the approximations 
for the irreducible vertex, the general form of the asymmetric one-particle propagator 
and the assumed structure of the excited final state of the nucleus. 

2. General theory 

The connection between the S matrix (T matrix) and the Green functions rests on a well 
known limiting process using the exact definitions of scattering states and Green 
functions (Naminiki 1960, Zhivopistsev 1965, Villars 1967). For completeness we will 
repeat the main steps of the procedure. For nucleon-nucleus scattering the required 
initial (final) scattering states are given as (Naminiki 1960, Gell-Mann and Goldberger 
1953) : 

Here lO)(lN)) denotes the exact ground state (excited state) of the target : 

t A recent extensive list of references is given in the habilitation of H V Geramb. 
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We restrict ourselves to bound states of the target nucleus. The total hamiltonian of the 
system is given by : 

The Schrodinger creation (annihilation) operators af(a,) of nucleons are defined with 
the standing wave boundary condition. By adding the phase factors eidi(e-idf) we ensure 
the correct asymptotic behaviour. It is suitable to choose for the single-particle states 
a ( = E,, j,, I , ,  m,) a basis defined by an appropriate shell-model hamiltonian h : 

hl%) = CaIE,). (2.6) 

14$2) = a i J ~ )  eida e'a*($(+)) 1.N (2.7) 

With the help of model states defined according to the procedure of Villars (1967) by : 

we can express the required transition element as follows : 

The left-hand side of equation (2.8) can be expressed by the asymmetric Green function, 
defined as: 

where 

is the Fourier transform of 

gZo = - i(NIT(a,(t,&d(td)) 10). 

By comparison of (2.1), (2.7) and (2.9) we obtain the relation : 

(2.10) 

(2.11) 

(2.12) 

In order to get the T matrix one has in the next step to put the equation of motion for 
gEo in such a form that the structure of the right-hand side of equation (2.8) emerges. 
Since the theory of normal Green functions, defined by 

g a l . , , a ~ , b l . , , b n  = ( - i ~ ( o l T ( a z l ( L a i )  * . * aan(tan)uJm(lbn). . . ujl(tbi)) lO),  (2'13) 

has been studied in more detail (Abrikosov et a1 1965, Schultz 1964, Migdal 1965, 
Brown 1972, Fetter and Walecka 1971, Mattuck 1967), it seems appropriate to connect 
directly the problem of the asymmetric Green function to the four-point function. This 
can be done utilizing the projection procedure, since the asymmetric Green function is 
contained in the four-point function. One obtains the following equation of motion 
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(W Brenig, private communication, Goldberger and Watson 1964, Speth 1970) : 

(2.14) 

We use the convention, according to which summation or integration, respectively, is to 
be carried out over all doubly occurring (Latin) indices. I&, is the effective particle-hole 
interaction (irreducible vertex), defined via the effective single-particle potential U 
(irreducible mass operator) by (Baym and Kadanoff 1961, Brenig and Wagner 1963) : 

(2.15) 

The parts of the theory of the normal Green functions needed in our approach are given 
in the appendix. In energy space equation (2.14) becomes: 

do( E i + T  
Eo - ""I 

For equation (2.8) we obtain now : 

(2.16) 

(2.17) 

Equations (2.14) or (2.16), which determine the scattering process, exhibit the formal 
structure of the scattering. If we express these equations graphically, we obtain : 

IO)  ' =v (2.14) 

The incoming particle, described by the one-particle propagator gbi, propagates in the 
medium until it scatters in matter via the irreducible vertex I causing a stable excitation 
of the nucleus (g2O). After this process the one-particle propagation takes place to the 
final state f. The whole process can therefore be split up into three steps: First, the 
incoming particle, asymptotically in the shell-model state i, distributes its single-particle 
strength among several shell-model states (non-diagonal single-particle propagator) 
due to the interaction with virtual phonons corresponding to 'elastic' scattering. The 
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same can happen for the outgoing particle. These shell-model states, properly weighted, 
interact in the intermediate step due to virtual processes contained in I in the presence 
of the final stable excitation of the nucleus. The investigation of I is the topic of the next 
section. 

The treatment of the single-particle propagation goes as follows. 
Using the basis of the hamiltonian h the two-point function can be cast in the form : 

(2.18) 

(2.19) 

(2.20) 

uD is the energy-dependent difference between the full U and the shell-model potential U”. 
It causes no difficulties to include an imaginary part in the shell-model potential. The 
expression iqigSi(Ei) is by definition the single-particle wavefunction for elastic scattering. 
In an obvious notation we obtain : 

The equation for q can be read off from (2.18): 

T~ describes the deviations in elastic scattering mainly due to couplings to virtual 
phonons of several types. Formally (2.18) is expressed graphically as follows : 

Now insertion of (2.18) and (2.21) into (2.17) yields: 

(2.23) 

(2.24) 

So, the incoming (outgoing) particle can distribute its single-particle strength among 
several shell-model states due to the interaction with the core corresponding to elastic 
scattering. The inclusion of the single-partide potential beyond the Hartree-Fock 
approximation in calculating the two-point function is intimately related to the inelastic 
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scattering, because I directly emerges from U according to (2.15). This question has 
been attacked since the pioneer work Brown et al (1 963) in different approximations 
(MacKellar et al1971, Dover and Giai 1971, Bruneau and Vinh-Mau 1970, Werner 1967, 
Brenig 1967, Weigel 1968, Zawischa and Werner 1969, Vinh-Mau 1970). The connection 
with higher-order response functions has also been studied (Winter 1972). Since we will 
encounter similar problems in constructing I we will not discuss this problem further 
and assume, if necessary, that in some approximation the two-point function (or sD) is 
known. In general it is possible that resonances of the elastic scattering, due to the 
occurrence of sD, also show up in the inelastic process (see 3 4). 

If I is assumed to act instantaneously one obtains necessarily the DWBA approxi- 
mation : 

where Lo denotes the uncorrelated response function : 

(2.25) 

(2.26) 

Restriction to shell-model single-particle propagation leads to the ‘standard’ DWRA 
approximation : 

(2.27) 

which agrees with the result of Love (1969, equation (41)), if we assume a Hartree-Fock 
structure for IN).  The second term of (41) would correspond to a non-diagonal one- 
particle propagator. It is obvious from the comparison of the spectral representations 
that the DWBA approximation (2.25) adds additional poles to g:’, which are incorrect. 
The pole structure of (2.25) coincides only partly with the correct structure (2.9). Whether 
the DWBA approximation holds depends on the problem under consideration (Hodgson 
1971, Austern 1970, Young 1968, Jackson 1970, Emrich 1971, Geramb 1972, Geramb 
et al1972, Geramb 1973). If one wants to go beyond the DWBA non-instantaneous terms 
of I must be included, which is discussed in the next section. 

Formally one can obtain a resonance structure in the scattering amplitude by 
splitting up the effective particle-hole force in the instantaneous and non-instantaneous 
part. One gets by iteration of (2.16) the following result (i2 = E ,  -EN) : 

T(”i) (E E’ ; 0) = I%Jp(c, E’; 0)- de“ CC I$&(E, E“ ; w)L&(E”, W)T$$(E”, E‘; 0) . (2.29) 
’ 1 it, Yd I 

Insertion of (2.28) into (2.17) leads to the standard decomposition of the scattering 
process into the direct plus compound term. 

As we shall see in the next section, only approximate expressions for I can be obtained. 
Even if we were to assume a more or less rigorous knowledge of I ,  one has still to solve 
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equation ( 2 . 1 4 )  or ( 2 . 1 6 ) ,  respectively. Since equation ( 2 . 1 6 )  is an integral equation 
with respect to the energy, for which solutions are not known, one has to discuss several 
simplifications in order to obtain a tractable problem. This will be postponed to $ 4 .  

3. Approximations for the irreducible vertex 

It has been shown in 52 that the first relevant question consists in finding an expression 
for the non-instantaneous (or equivalently the energy dependent) part of the effective 
particle-hole force. A s  known from similar problems in field theory only formal closed 
expressions exist for the irreducible vertex (see appendix). The reason is that due to 
the two-body force one cannot eliminate all correlations of higher order. One has either 
to know the functional derivative of the effective scattering amplitude r in the medium 
with respect to the one-particle propagator or the irreducible particle-hole vertex for 
the so-called six-point response function, respectively. Therefore one is restricted to 
suitable approximations for the effective particle-hole force in order to proceed with 
the solution for the asymmetric Green function. We are going to discuss essentially 
three approximations. 

3.1. Perturbation expansion of I 

The simplest choice is the discussion of the perturbation expansion, which can be 
obtained by iterating ( A . l )  and ( A . 2 )  starting with 6u/6q = 0. Up to second order one 
obtains : 

2n1,app(c, 6' ; w )  

= 2Uaapp + 2 c c [Ua6S&pv(E + Q')Upvpp + U,Sp4L;pjv(E - C ' ) b v p p  
14 P V  

+ 2UcrSqpL:p& - E')Uvappl, ( 3 . 1 )  
with 

In this approximation one has schematically the following contributions for gEo : 

IN) IO) 

t 

IN) 10) 

( 3 . 3 )  

(3.4) 
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The first graph corresponds to the DWBA approximation, in which the energy integration 
is trivial (see (2.25)). 

3.2. Ladder approximation 

In the second approximation, we assume that the effective single-particle potential is 
represented by the ladder approximation, which reduces with some additional neglec- 
tions to the Brueckner approximation : 

ukl -irkmlngnm (3.5) 

with 

rkLImn = 2Vklmn + ivklabgargbsrhnn 

(3.6) L 
= 2Uklmn + ivklabgabrsvrsmn. 

One obtains then in this approximation by use of (2.15) and (3.6): 

(3.7) 

In energy space the formal solution of (3.6) reads as follows 

gaSpr(W) is defined in (3.14). In Feynman graphs (3.7) exhibits a similar structure to the 
first two graphs of (3.4). One has only to replace the bare interaction by TL. If we restrict 
ourselves to second order in the interaction we return to the result (3.1). 

3.3. Linear approximation 

The third approximation is the linear approximation for I neglecting the term X/Sg in 
I (see AS). One obtains (Brenig and Wagner 1963, Weigel 1972): 

Iadbr 2vadbr + ivadmngmkgnsrksbr + iVmanrgnsgkmrdsbk - iUmanrgnsgkmrsdbk (3*9) 

from which the following graphical representation for g io  results : 

N O  NO gfi -gfi,DWBA +;e:* 
N 0 

(3.10) 

Instead of treating equation (3.9) directly, which requires a knowledge of the structure 
of the reducible vertex, we are going to use the connection between the reducible vertex 
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(effective scattering amplitude in medium) and the four-point function (Winter 1972, 
Weigel 1972, Nozieres 1964): 

(3.1 1 )  gaxgbyrxycd = gobxyKxycd 9 

Laxbyzycxd = iguygxbrycxd ’ (3.12) 

The effective particle-particle force K is defined in the appendix (A.6). The structures 
of g(2) and L are more transparent as the structure of r (see 3.16, 3.17). L denotes the 
generalized response function defined in (A.1). It seems appropriate in the spirit of 
the linear approximation (3.9) to replace K and I by the nucleon-nucleon interaction 
and to use for gc2) (L) the outcome of the standard p-p RPA ( p h  RPA) problem (Brown 
1972, Fetter and Walecka 1971, Mattuck 1967, Rowe 1970). After performing this 
procedure we obtaint : 

or 

(3.13) 

Here, we have introduced the following definitions : 

(3.15) 

In equation (3.14) we split up the energy variables according the p p  channel, in (3.15) 
the p-h channel decomposition was used. For the spectral representation the following 
structure holds : 

(3.16) 

(3.17) 

with 

p&+2 = (Ola(aqlN + 2) ; (3.18) 

Prq = (Ol+[lN>. (3.19) 

The amplitudes p can be taken from the p p  or p-h RPA problem, respectively. One 
should use in the RPA problem in this case the nucleon-nucleon interaction, eventually 

p;-2 = ( N  - 21apq10>, 

t This result is also obtainable by application of the Martin-Schwinger procedure plus projection method 
to the equation of motion for the asymmetric Green function. 
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renormalized due to the restriction of the basis (see, for instance, Migdal 1965, Beres 
and MacDonald 1967, Austin and Crawley 1972). If one uses in the integral equation for 
L the instantaneous nucleon-nucleon interaction the integral in (3.13) reduces to (Weigel 
1969) : 

3.4. Neglection of effective three-body interactions 

Another possibility is the use of the correct expression for the particle-hole force in 
terms of the irreducible particle-hole force K'ph' belonging to integral equation for the 
correlated part of the six-point function g' (Winter 1972) : 

The correlated four-point function is defined by (A.6). For g' the following equation 
holds : 

I t  is possible, due to the restriction to two-body forces, to express L by gc and U with the 
help of the equation of motion method. Comparison with the equation for L which 
contains the effective particle-hole force I as the integral kernel (see A.l) yields the 
following exact equation for I : 

Iadbr  = 2Vadbr + ii(Kgjj. jrr - Kg!a), t jr)gjxgtcrcxbygym. (3.23) 

The first term describes in the strict sense the antisymmetrized direct scattering, the 
second term takes care of polarization effects. If one neglects effective 'three-particle' 
forces (connected part of K'ph'), corresponding for instance to anharmonic virtual 
states, the following approximation emerges : 

K%j, j t r  g,' Kdajr - gdj ' I m a t r .  (3.24) 

Introduction of the last approximation into equation (3.23) yields : 

Iadbr 2Uadbr + iKadmngmxgnyrxybr - iilmatrgtcgymrcdby + iilmajrgjxgymrdxby 

= 2Uadbr + iKadmngmnxyKxybr + flmajrLyjxmldxby - flmarrL!ir!wlcdby + O(13). (3.25) 

Equation (3.25) reduces to (3.9), if we insert on the right-hand side of (3.25) for I and K 
the first-order approximation. In the spirit of our philosophy we want to determine the 
pole structure of I ,  which can be approximately obtained by using the energy-independent 
approximation for I and K on the right-hand side of (3.25). The procedure agrees now 
exactly with the method used in evaluating equation (3.9). One has only to replace v 
by the energy-independent approximations for I and K .  The p h  and p p  RPA should 
now be done with these forces (Migdal 1965, Bes and Broglia 1971). We obtain instead 
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of (3.13) the following structure: 

(3.261 

Here the upper index s indicates that these forces are assumed to act statically (no 
energy dependence). Since the structure is very similar to (3.13) one can understand 
that sometimes the phenomenological treatment, where one starts with a hamiltonian 
in which the nucleon-nucleon potential is replaced by an effective potential, can be 
successful. In the more rigorous approach it turns out that one has to deal with three 
different kind of forces, namely U, I ( ’ )  and K‘”. These forces agree only in first order. If 
one takes higher-order effects into account I(’) and K(’) differ from U and from each other. 
Furthermore in general I(’)  and K(’) are complex potentials. This is even the case if one 
does not restrict the basis of states. Such a mathematical restriction leads to an additional 
change of these forces. Such complex forces have so far not been taken into account. The 
standard method is to use real forces for I(’) and P). Bes and Broglia (1971) for instance 
treated particle-vibration coupling in a semi-phenomenological manner using separable 
potentials. 

As a general conclusion from our approximations we can deduce that the structure of 
the effective particle-hole interaction has essentially the following form : 

(3.27) 

where wp and wpr are functions of E and Q. The residues and I ( 2 )  can be deduced 
either from perturbation theory, ladder approximation or the solution of the p p  and 
p h  RPA problem, depending on the chosen approximation. Weakly energy-dependent 
terms can be incorporated into I o .  

4. Treatment of the asymmetric Green function 

According to equation (2.9) the asymmetric Green function has the following spectral 
representation : 

with 

(4.3) 

(4.4) 

(4.5) 
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The first-order approximation for fS  and E, follows from commutator [H,a,]- and 
[ H ,  af ]  - respectively. Utilizing equation (3.27) we obtain by complex integration : 

- 1 1 I;&,(E, R)A;,(E, - cop, - iq)- . (4.6) 

Z(’), I(’), up and w,, are known, if we assume knowledge of the forces and the result of 
nuclear structure calculations. From such calculations we can determine the explicit 
structure of g‘”(o) and L(w). If we restrict ourselves to perturbation theory, we have to 
insert shell-model values for g(’)(w) and L(w). The E, and E ,  can be taken either from 
experiment or from the solution for the two-point function, respectively. In the latter 
case one has to find, as discussed in Q 2, a reasonable approximation for the energy- 
dependent part of the effective one-particle potential (MacKellar et al 1971, Dover and 
Giai 1971, Bruneau and Mau 1970, Werner 1967, Brenig 1967, Weigel 1968, Zawischa 
and Werner 1969, Vinh-Mau 1970, Winter 1972). We assume knowledge of E,(€,) and 
the residues of the two-point function ( ( N +  llaJ10), . . . etc). For a complete solution 
we have to obtain the quantities (Nla,lN+ 1) or (N laJ lN-  I), respectively. From 
equation (2.16) we would be able to get an equation for these quantities (or a subset of 
them by restricting the number of states) utilizing the method of comparison of poles. 
The resulting sets of equations are complicated and it seems to us that a satisfactory 
solution is not obtainable. Therefore it seems necessary to look for an approximate 
solution of expression (4.6). 

The first choice could be an iteration procedure starting with Pi) in equation (2.28). 
This expansion seems reasonable, if the perturbation expansion of the whole process 
converges rapidly. Then we would obtain the following series : 

P’ s 1 

In the second choice we utilize our knowledge about the final state of the target 
nucleus. For instance we could assume a particle-hole structure of this state known 
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from a RPA calculation. Therefore we make the ansatz 

IN) = CklO) = c (xFhaiah-yFhal!ap)lO) 
ph 

(4.9) 

for the final state. The amplitudes x and y can be taken from a nuclear structure calcula- 
tion (see, eg, Rowe 1970, Weigel et a1 1971, Dover er a1 1972). The essential problem 
consists now according to (4.4) and (4.5) in the determination of 

(NlaplN+ 1) = (OlCNaplN+ 1) 

= [(xFh)*(OlaiapaplN+ l)-(y~h)*(o~a~aha,lN+ l>1, (4.10) 
ph 

and 

(NlaJlN-1) = (O(CNaJIN-1) 

(4.1 1) 

One possibility for obtaining the matrix elements (OlataalN+ 1) and (OlataatlN - 1) 
is to solve the so-called 2 p l h  RPA problem, for which the theory is known (Winter 1972, 
Schuck et a1 1973). 

Another way to relate the problem to nuclear structure calculations consists in 
linking these matrix elements to the generalized density matrix of the odd-neighbour 
nuclei. This can be achieved by utilizing the commutator relations for fermions. We get 
for instance : 

-- 
( O ~ U ~ U , U , ~ N  + 1 ) = - 6,,(01~,lN + 1 ) + _C_ ( Ola,lN + 1 ) (N + 1 la;aplN + 1 ). (4.12) 

I N + 1 )  

The generalized density matrix (NfllaiaslNk 1) can be calculated in several approxi- 
mations discussed in Migdal(1965), Speth (1970), Weigel(l972). Essentially one has to 
know the structure of the autocorrelation function L(o) of the density fluctuations. 
Experimentally the density matrix is related to moments and transitions. If we apply 
Migdal’s quasiparticle approach Aid (or equivalently (4.12)) reduces in an obvious 
notation (z:/~ = (N + 1, Ea, I9(aLlO), . . . ; 19 has to be a subset of the quantum number set 
U) : 

(O(a$haplN+ 1, Ep,P)(N+1>Efi,PIafIO) 
N -6,h(1-np)(l-n,)z:12z~/26p,6+(1-np)(l -nn,)zi12z:i2(N+1, Ep,Plal!a,IN+l,Ep,P). 

(4.13) 
In this method, the generalized density matrix can be directly related to the renormalized 
RPA problem with instantaneous forces. One obtains (Weigel 1972) : 

( N +  1, E,, Pla!aplN+ 1, E,, P> 
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The quantities with a tilde denote the renormalized expressions (Weigel 1969, Weigel 
et al 1971). If we were to apply this method we could express Aid and BLd directly by 
known theoretical results. 

It may be instructive to discuss the general result (4.6) in a schematic manner for 
some examples. If we use for instance the ansatz (4.9) we have to consider only graphs, 
which always have the vacuum state as the background. Then gzo has essentially the 
following form : 

(4.15) 

where we have drawn the first term of (4.1). Typical contributions to gEo from (4.6) 
show for instance the following structures : 

P I  

(4.16) 

Here, we presented two graphs emerging from (3.13). The first one is a contribution from 
the third term, the second one is caused by the second term in (3.13). If we use (3.26) we 
have to replace U by 1 or K ,  respectively. The interpretation of the diagrams is simple, 
the first process contains in the intermediate stage an excited state N' of the target 
nucleus plus a state of the N + 1 system. If the energy of the outgoing particle is in the 
vicinity of E,, +E,+ (e f  'Y cp + E,. - E,) we expect a relevant contribution to the 
scattering process. In the second graph we have the intermediate propagation of a 
state of the N + 2 system plus a state of the N - 1 system. Again we expect a larger 
contribution if energetically the intermediate stage is close to the in- or out-going 
situation. Whether such a possibility exists depends on the structure of the system 
considered. One can obtain under some approximations the explicit existence of a 
single Breit-Wigner resonance, if one restricts oneself to a single term in 1. Additionally 
selection rules may play an important role. 

One might expect additional terms, where a N + 1 state alone propagates in a part 
of the intermediate structure, an example would be the next graph : 

(4.17) 

The right-hand part of this graph is not contained in I(€, E', R) but in the one-particle 
propagator. This can be seen easily by inversion of the equation of motion for the 
two-point function. In our presentation this term would be represented by T~ (see (4.18)) 
via the relation : 

% n g ; b  = iumxyrg;rxb 9 (4.18) 
if gs is equal to the Hartree-Fock propagator. The total graph (4.17) is obtained if we 
use the energy-independent approximation for I (see (2.24)). Of course, one could use 
in principle insertions of the kind (4.16) on the left part (4.17), so obtaining higher-order 
processes. 
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5. summary 

By expressing the wavefunction of inelastic nucleon-nucleus scattering as a projected 
version of the generalized linear response function information about the intermediate 
structure of the process is contained in an integral over the irreducible vertex I times the 
asymmetric Green function?’ (see equations (2.17), (2.24)). An instantaneous effective 
particle-hole force leads directly to the well known DWRA approximation. Deviations 
from this approximation are therefore caused by the energy dependence of the irre- 
ducible vertex. Formally one can obtain a T matrix for the non-direct process given by 
(2.29). The structure of the irreducible vertex has been investigated in four approxima- 
tions : (i) second-order (renormalized) perturbation theory ; (ii) ladder approximation for 
the effective single-particle potential ; (iii) linear approximation (in the effective scattering 
matrix) for the irreducible vertex ; (iv) neglect of effective three-body interactions in the 
exact expression for the irreducible vertex. 

For the purpose of obtaining explicit expressions for I one has to perform nuclear 
structure calculations of a different kind. One has to obtain the p p  or p h  structures of 
the target system by using the RPA approximations in different versions (first-order, 
standard or renormalized, respectively). The general outcome for I can be expressed as a 
sum (integral) of pole terms (see (3.27)). The energy integral was evaluated by utilizing 
the spectral representation of the asymmetric Green function. Three approximations 
have been considered : (i) the iteration procedure starting with the DWBA solution; (ii) use 
of the solution of the p p h  RPA problem assuming knowledge of the final target state; 
(iii) by insertion of a complete set of N k 1 states, the problem can be reduced to the 
generalized density matrix of the odd-neighbour nuclei, for which several theories and 
calculations are available. 

The integration was performed by Chauchy’s theorem. The result shows the inter- 
mediate structure of the process discussed for some terms in more detail in @ 4. Informa- 
tion mainly from nuclear structure calculations is needed in the expressions for the 
scattering matrix, so obtaining a connection between nucleon-nucleus scattering and 
the nuclear structure problem. The freedom of choice for the forces in the theory is 
restricted, since the same quantities ought to be used in different calculations. 
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Appendix 

Relevant for our problem is the system of equations for the two- and four-point functions. 
Application of the equation of motion for the field operators and Schwinger’s principle 
lead to the following relations (Baym and Kadanoff 1962, Novozhilov and Tulub 1961, 
Naminiki 1960, Weigel 1969, Brenig and Wagner 1963) (L denotes the generalized 

t I t  is possible to link the Green function approach to the coupled-channel treatment (see Winter 1974) 
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response function ; q is the source term ; L:snr = igmrgsn , and time dependence is included 
in U). 

= - LLbclcqb&psqrlq = 0 ? ('4. 1) 

ukl = - 2iVkmlngnm + iVkrstgsn- ('4.2) 

which can be cast in the following final form: 

('4.3) 

u k j  = - 2iVkajbgba + ukmangarrrcjdgdmgnc. ('4.4) 

r denotes the effective scattering matrix in the medium obeying the following equation : 

( '4 .5)  - - I a l b t a Z b j  (. . 
The connection between the reducible vertex r (effective scattering matrix) and the four- 
point function is given by : 

gkmln - gklgmn + gkngml = igkrgmurrusugungsf = &mln = igkrgmuKrusvgusnf. (A.6) 

In the last expression the kernel is defined as the sum of irreducible graphs in the p p  
channel (Nozieres 1964). 
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